Tuesday, March 18, 2025

Advanced Operations with pd.Series in Pandas


1. Filtering Values in a Series

You can filter values based on conditions.

# Get values greater than 20
print(data[data > 20])

Output:

c    30
d    40
dtype: int64


---

2. Performing Mathematical Operations

You can apply mathematical operations on a Series.

# Multiply all values by 2
print(data * 2)

Output:

a    20
b    40
c    60
d    80
dtype: int64


---

3. Applying Functions Using apply()

You can apply custom functions to modify values.

print(data.apply(lambda x: x ** 2))  # Square each value

Output:

a    100
b    400
c    900
d   1600
dtype: int64


---

4. Checking for Missing (NaN) Values

data_with_nan = pd.Series([10, 20, None, 40], index=['a', 'b', 'c', 'd'])

# Check for missing values
print(data_with_nan.isna())

Output:

a    False
b    False
c     True
d    False
dtype: bool

To fill missing values:

print(data_with_nan.fillna(0))  # Replace NaN with 0


---

5. Using map() for Element-wise Mapping

# Convert values to strings with a prefix
print(data.map(lambda x: f"Value: {x}"))

Output:

a    Value: 10
b    Value: 20
c    Value: 30
d    Value: 40
dtype: object


---

6. Vectorized Operations (Element-wise)

You can perform vectorized operations efficiently.

# Log transform (requires numpy)
import numpy as np
print(np.log(data))


---

7. Sorting a Series

# Sort by values
print(data.sort_values(ascending=False))

# Sort by index
print(data.sort_index())


---

8. Checking for Membership

print('b' in data)  # Output: True


---

9. Converting Series to Other Data Types

# Convert to a list
print(data.tolist())

# Convert to a dictionary
print(data.to_dict())

Related Posts Plugin for WordPress, Blogger...